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EXISTENCE OF FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH STEPANOV FORCING TERMS.

HyuN MORK LEE

ABSTRACT. We introduce a new concept of Stepanov weighted pseudo
almost periodic functions of class  which have been established by
recently in [20]. Furthermore, we study the uniqueness and exis-
tence of Stepanov weighted pseudo almost periodic mild solutions of
partial neutral functional differential equations having the Stepanov
pseudo almost periodic forcing terms on finite delay.

1. Introduction

It is well known that Periodicity is natural and important phenomena
in the real world. However real systems usually exhibit internal varia-
tions or external perturbations which are only approximately periodic.
The theory of almost periodic functions was introduced in the literature
around 1924-1926 with the pioneering work the Denish mathematician
Harald Bohr. Many authors have furthermore generalized in different
directions the notion of almost periodicity for more realistic decription
to real world phenomenon around us. A various types of Almost peri-
odic systems describe world more realistically than periodic ones. Since
then, this concept has undergone several interesting, natural, and pow-
erful generalization, such as pseudo almost periodicity, weighted pseudo
almost periodicity, weighted pseudo periodic of class r and so on. We
refer to [3, 5, 10, 16] and references cited therein for more details on the
subject. Diagana [6] introduced the concept of Stepanov-like weighted
pseudo almost periodicity and applied the concept to study the existence
and uniqueness of weighted pseudo almost periodic solutions.
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In [7], Diagana investigate some sufficient conditions for the existence
and uniqueness of pseudo almost periodic mild solutions to the class of
abstract partial evolution equations given by

L u(t) + (1, Bu(0)] = Ault) + (1, Cult)), t € B

where A is the infinitesimal generator of an exponentially stable semi-
group acting on X, B, C' are arbitrary densely defined closed linear oper-
ators on X and f, g are some jointly continuous functions. They obtained
the existence and uniqueness of a pseudo periodic mild solution under
the some appropriate assumptions. Further, their main results may serve
to characterize pseudo almost periodic solutions to partial neutral func-
tional differential equations [5], integro-differential equations [2],[4],[11]
and others.

Xia [18] introduce the notion of weighted pseudo S-asymptotic peri-
odicity in the Stepanov sense, which generalizes the known concepts in
different directions and worked the existence and uniqueness of weighted
pseudo S-asymptotically w-periodic solutions for the following equation

%[u(t) + f(t,u(t)] = Au(t) +g(t,ut)),t € R,,u(0) =ug, t € RT,
where w is an integer.

In recent years, Zheng in [20] worked a further investigation on the
composition results for weighted Stepanov-like pseudo periodic functions
of class r and proved a new composition theorem for weighted Stepanov-
like pseudo periodic functions of class r. And then, they prove the
existence and uniqueness of weighted periodic solution to the follow-
ing semi-linear delay differential equaton with a weighted Stepanov-like
pseudo periodic nonlinear term

u'(t) = Au(t)+ f(t,w),t € R,

where w is an integer. Motivated by the previous works, we investigate
that the existence and uniqueness of Stepanov weighted pseudo almost
periodic mild solutions for the following system having the Stepanov
pseudo almost periodic forcing terms on Banach space.

(1.1) %[u(t}—l—f(t, Bu)l = Au(t)+ g(t,Cup),t € R,

where A is the infinitesimal generator of an exponentially stable Cop-
semigroup acting on X, u; € B is defined by ui(f) = u(t + ) for
0 € [-r,0], r is nonnegative constant, f, B are specified in the later
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and B,C are arbitrary densely defined closed linear operator on X, and
f, g are some jointly continuous functions. an appropriate function that
will be given later.

The organization and main ideas of this article are briefly described
as follows. In the second section, we recall some definitions and results
related with Stepanov almost periodic functions. In third section, af-
ter providing some lemmas and preliminary results which will be used
through this paper. We give a main results, inspired from the previ-
ous papers. In forth section, we give an example to illustrate our main
results.

2. Preliminaries and Notations

For a given T' > 0 and each p € U, set u(T, p)= f_TT p(t)dt.
In order to facilitate our discussion, we introduce the following notations:

U : {peLl.R):plt) >0, aetcR}
U : {peU: lim u(T,p)= oo}
T—o00
Up : {p€Ux:pis bounded, in]f%p(:r) > 0.
fAS

For a Banach space (X,||-||) and (Y, || -]),
BC(R,X) : {f:R— X : the Banach space of bounded continuous functions}
LP(R,X) : {f:R— X : the space of all classes of equivalence
of measurable function such that ||f|| € LT (R,R)}

LV (R,X) : {f:R— X : the space of all classes of equivalence

loc
of measurable function such that the restriction of f
to every bounded subinterval of R is in LT (R, RT)}

B : The space C([—r,0], X) endowed with the sup norm |[¢||s on [—r,0].

Next, we review some definitions and lemmas well known from our
references ([5, 12, 15, 17, 19]).

DEFINITION 2.1. A function f € Cp(R, X) is called almost periodic if
for every € > 0, if there exists an [ such that every interval of length I(e)
contains a number 7 with property that

[|f(t+7)— f(t)]] <e, for everyt € R.
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The collection of such functions is denoted by AP(R, X).

We need to define new notions for the delayed equations for which
the history belong to C([—r,0]; X).

DEFINITION 2.2. A function f € BC(R, X) is said to be a weighted-
pseudo ergodic of class r if

1 T
tim o [ (Csu (16001 patt)d = 0.
T—o0 M(Ta )01) =T “O€t—r,t]
The collection of such functions is denoted by WPAPy(R, X, r, p1, p2).

DEFINITION 2.3. Let p1, p2 € Uso. A continuous function f € BC(R, X)
is called weighted pseudo almost periodic of class r
if it can be written as
f=h+e,
with h € AP(X) and ¢ € WPAPy(R, X, p1, p2)-
The collection of such functions is denoted by WPAP(R, X, r, p1, p2).

Let || - || denote the norm of space LP(0, 1; X) for p € [1,00), we need
the definition as followings.

DEFINITION 2.4. The bochner transform f°(t,s), t € R, s € [0,1] of
a function f: R — X is defined by

F(t.5) = F(t+ ).

The bochner transform f°(¢,s,u), t € R, s € [0,1], u € Y of a function
f:RxY — X is defined by

fb(t, s,u) = f(t+ s,u).

DEFINITION 2.5. Stepanov norm :
For a positive number L and f,g € L} (R, X),

loc

1 z+L 1
[1flls» = sup [/ | f@)|Pdt]»,p > 1.
L z€ER L T

DEFINITION 2.6. Let p € [1,00). The space BSP(R, X)((R x Y, X))
of all Stepanov bounded functions, with the exponent p, contains of all
mesurable functions f on R with values in X such that f* € L>®(R, L?((0,1); X)).
This is a Banach space with the norm

t+1 1
1Fllsr = 17 lleqmry =su ([ I£@IPar)” =sup £ + )]
teR t teR

We need the following weighted Stepanov ergodic space in BSP(R, X):
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DEFINITION 2.7. Let p1, p2 € Us. A function f € BSP(R, X) is said
to be a SP-weighted ergodic if

1 T ( ( 0+1 ’ ( ’p ) %
lim / p2(t) sup / f(s)||Pds) " dt = 0.
T—oo pu(T, p1) J_1 ) oli—rt) Jo 176=)

The collection of such functions is denoted by SPW PAP,(R, X, r, p1, p2).

DEFINITION 2.8. [19] A function f € BSP(R; X) is said to be weighted
pseudo almost periodic in the sense of Stepanov(SP-weighted pseudo pe-
riodic) of class r if we want to highlight the degree p if it can be written
as

f=h+e,
with
h e AP(X) and ¢ € SPSWPAPy(R,r, X, p1, p2).
We denote the set of all such functions by SPWPAP(R, X, r, p1, p2).

Under the suitably condition, the decomposition is unique. Similar
proofs and contents are well explained and can be easily proved in [20].

THEOREM 2.9. Let p1,p2 € Ur and infrsg Zgg;; > 0. Then the
decomposition of weighted Stepanov pseudo almost periodic function of
class r is unique.

For our main results, we introduce main composition theorem for
weighted Stepanov pseudo periodic function which have been established
recently in [20]. A composition theorem is a very important when it
comes to dealing with Stepanov weighted pseudo almost periodic evo-
lutions equations. Shan [20] establish composition results for weighted
Stepanov pseudo periodic function with following hypothese:

(H;y) For any € > 0, there exists o > 0 such that x,y € LY(0,1; X)
and ||z — y[|, < o imply that
(At + -, 2() = bt + - y())llp <€ t R

THEOREM 2.10. [20] Let p1,p2 € Uso, 7 >0, f = g+¢ € SPWPAP(Rx
X, X,r,p1,p2), h = h1 + hg € SPWPAP(R,X,r,p1,p2) with hi(R)
compact, g(t +w) — g(t) =0, hi(t +w) — hi(t) = 0. Assume g satisfies
(Hy), ¢ satisfies (Hy) and {f(-,z) : z € K} is bounded in SPW PAP (R x
X, X,r, p1,p2) for any bounded K C X, then f(-,h(-)) € SPWPAP(R, X,r, p1,p2).

To study the system for delay we need the following Lemma:

LEMMA 2.11. [20] Let p1,p2 € Up, u € SPWPAP(R, X,r, p1,p2),
then u; belongs to SPWPAP(R,B,r, p1,p2).
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COROLLARY 2.12. [20] Let p1,p2 € Up, u € WPAP(R, X, r, p1, p2),
then u; belongs to WPAP(R,B,r, p1,p2).

Motivated from work of [7], [12] we define the mild solution of Stepanov
weighted pseudo almost periodic equation as following.

DEFINITION 2.13. Let T'(t) be the Cyp-semigroup generated by A and
g € LY(R, X). The function u(t) € C(R, X) given by
t

u(t) = —f(t, Bu) —/ AT (t — s) f(s, Bus) +/ T(t — s)g(s,Cug)ds,

—0o0 —0o0

t

is the mild solution of equation (1.1) provided that the function s —
AT (t — s)f(s,u(s)) is integrable on (—oo,t) for t € R.

3. Existence results for Stepanov weighted pseudo almost
periodic mild solution

To work (1.1) we established some sufficient criteria as following;:

. T, T,
(H2) Let p1, p2 € Ur and infpsg % > 0 and supp % < 0.

(H3) The linear operator B,C € B(Y, X) with
max (||B||B(Y,X)v ||C||B(Y,X)) =w.
(H4) The operator A : D(A) C X — X is the infinitesimal generator

of an exponentially stable Cop-semigroup (7'()):>0 such that there exist
constants M > 0 and § > 0 with

||T(t)|| < Me™° for all t > 0.

Moreover, the function o — AT(c) defined from RT into B(Y)) is strong
(Lebesgue) measure and there exists a nonincreasing function v : R —

1
[0,00) and a constant w > 0 with n =77, (fkk—l e “Ids)7 < oo such
that
IAT(t)]| gy < e -2(1), t e RT.
(Hs) f,g € S'SWPAP(R, X,r, p1, p2) and there exist constant Ly, L, >
0 such that
Lf(E1) — F(Eb2)llp < Lyllthr — voll,

and

g (t, v1) = g(t,2))llp < Lgllthr — |
for all ¢; € B, i=1,2and t € R.
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(Hs) Let ¢ > 1 such that % + % = 1. Denote

LEMMA 3.1. We assume that the hypothesis (Hs), (Hy) is satisfied.
Iff S SpWPAP(R X,r, pl,pg), pP1, P2 € Uy then

(T f)(t f AT(t —s)f(s) e WPAP(R, X, r, p1, p2).

Proof. Forn <t <n+1, n € N, we have

TN <

I(T1f)(E+€) —

</ " M ()|

n o et—k+1
S e
— Jt—k

IN

k

1

= Lllfllsr-

This means that I'; is bounded.
Next we show that I'y is continuous.

t+e

LA @N

<

<

IN

IN

IN

IN

I 3 AT(t+e—s)f(

MZ/
wS ([ ey ([
).

(

o0

/ AT (= $)[|(£(s + ) + F(s)) |ds
Z/tnﬂ T(t - 5)||f(s)|/ds

5q

M4

)'(

(&

t—k+1

9

t—k+1

_ - Mea(nt+k1/
> U

ed—1

I / AT(t — 5)f(s)ds]

00 1f (s)llds

IFIPds)?

e 2| 1f (5)]|ds

t—k+1

357

s)ds — / AT(t — 5)f(s)ds]|

1L (s)l[ds)”
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It is clear that I'; is coninuous.
Finally we must show that

[ (s ) =o,

lim
T—oo (T, p1) J_1 0c(t—r,t]

where ¥(s) = fjoo AT (t — s)f(s)ds.
For some constant M , we have

@)l < / AT (t — 3) (s)ds]|

t
< / Me3=9)| £ (s)]]

—k+1
> / T M ) s

k=1"7t"k

n t—k+1 1
= Yoo ([ ) pas)”
k=1 t—k

v /:+ IFIPds)”.

In the mean time, since f € SPWPAP(R,®B,r, p1,p2), there exists
m € N, such that

IN

1

! /sz(t)( sup (/:Hl!f(s)ﬂpds)”)dt<EforTZm

w(T,p1) J-r 0€t—r,1]

and let

0+1 1
MTeef) = {te [T s ([ NfG)IPs)” 2 6l prpe € Un
oet—r,t] 0

M(T7 p2) 1 €
sup <00, 4= ”f”spa N PZ(t) < .
>0 (T, p1) (T, p1) J (e, f) p+1

We obtain

L m( sw o))

w(T,p1) Jor 0et—r,t]
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. u(f ol i plt)( w0 </::H Isolras)

M / /0—k+1 %
—_— t sup f(s)||Pds dt.
(T, p1) Ja(Toe,p) e )<96[t—r,t]( o—k 7l ) )

1

M / 0—k+1 2
+ — pa(t sup / F(s)||Pds )" )dt.
(T, p1) Ji—rm) /00 (Te, f) 2 )(Ge[tr,t]< 09—k 17l ) >

Mp [T
w(T, p1) /—T pa(t)dt

+ H(z]?pl) /i pg(t)(ees[?_g’t] (/9;k+1 Hf(S)HPdS) ;>dt.

IN

IN

t -
w(t, p2) 4 i,

IN

M,u sup
>0 k(t, p1)

Hence
T

. 1
Tll_{gom/_sz(t)( sup ]||w<e>\|)dt=o.

oclt—rt
O

From the proof of Lemma (3.1), we cn easily obtain the following Lemma.

LEMMA 3.2. We assume that the hypothesis (H2), (Hy4) is satisfied.
Ifg € SpWPAP(R’X’ T, P17P2)7P17P2 € Uoo Then

(T29)(t) = /t T(t—s)g(s)ds € WPAP(R, X,r, p1, p2).

—00

Now we give our main theorem.

THEOREM 3.3. Assume that the hypotheses (Hs) — (Hg) hold, then
the equation (1.1) has a unique weighted pseudo periodic mild solution
if(Oz + n)Kf(I) < 1.

Proof. Define the operator I'y : WPAP(X) — WPAP(X) by
x(t) = —f(t, Bxy) + (L) (t) + (D) (1),
where (T12)(t) = — [*__AT(t — s)f(s, Bxs), (T2)z(t) = [*__T(t -
$)g(s,Cxs)ds.
If 2 € WPAP(R, X, r, p1,p2), by the composition theorem of weight
Stepanov pseudo almost periodic [Theorem 2.10 and Corollary 3.1, 3.2]
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then f(s,zs), g(s,zs) € SPWPAP(R x X,9B,r,p1,p2). It follows that
the operator defined by (I'z)(t) maps WPAP into WPAP.

The linear operator B, C' € B(Y, X) with max(|| B|| g(v,x), [|Cl|pv,x)) =
w.

For all x,y € SPWPAP(R, X,r, p1,p2) and (Hs), (H3) we have

£ (&, Bz — f(t, By)lly Ky||Bxt — By|lyds

<
< Kyollze — yelly
< Kiol|lze — yilloo,y -

Then I' maps WPAP(R, X, r, p1, p2) into itself. Hence I" is well defined.

For z,y € WPAP(R, X,r,p1,p2) and for convenience, we separate
two part as following:

1(T1z) () = T (O] = II/ AT(t—S)f(S,B:cs)JF/_ AT(t — 5)f(s, Bys)ds

— | / AT(t = $)[f(t — 5, Bar_y) — f(t — 5, Bye_)lds|

>(

k

k=1 -1
< ft+Ek =2+ By oy) — f(t+k =24 Byirr—24)llp
< K50 - [|Teik-24 — Yerk—2+-|
< nKyo-lz(t+k—24+) —ylt+k—2+)]|
— K@ [l -yl
Similarly, we get
t t
(Tt = Tl = 1| [ Tl Bu) + [ T(t = s)gls,C)ds
—0oQ —00
t
= [ Tt Br) — glt = s, By s
—00
o k 1 k 1
< S ([ e ([ gt Bed) - g(s By
= k-1 k-1
< aKw- |z —yll.
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Hence, for any z,y € WPAP(R, X, r, p1, p2) we obtain

|(Tz)(E) = (Ty)(B)]looy < (a+0) K 5w - ||z = ylloo,y-

Then T is a contraction map if (o + 1) Kw < 1.

Therefore, I' has a unique fixed point x € WPAP(R, X, p1, p2) such
that 'z = z. This function u is a Stepanov weighted pseudo almost
periodic mild solution of equation(1.1).

This completes the proof of Theorem. O

4. Examples and Applications

In this section we consider a simple apphcatlon of our abstracts re-
sults, we give an example as follows at[ (t, ) +f fo s—t,m, &) (s,n)dnds]

Fult,€) + g(t,a(@w), t >0,0< €<, (1.2)
= u(t,0) = u(t,m) =0, t >0,

u(@,€) = ¢(0,6) =0,0<0,0<¢<m.
Where the functions ag,a,a1,b, and ¢ satisfy appropriate conditions.
To abstract this problem we shall take (X, || - ||) = L?(0,7) and define
x(t) = u(t,-). the operator A is given by

1

Af(v)=f (v)

with domain

D(A) = {f(-) e L*([0,7]) : /" (-) € L*([0, 7)), f(0) = f(m) = O}.
A is the infinetesimal generator of a Cp-semigroup 7'(t) on L?[0, @]
with
IT@#)|| <e 't >0.
Define the function f: R x % — X by

/ / —t,m,&)u(s, n)dnds,

then the above partial differential equation can be rewritten as an ab-
stract system of the equation (1.1) with u(t) = u(t,-).

By the main results one can easily show that the equation (1.2) has
a unique stepanov weighted pseudo almost periodic mild solution. For
more details examples, we refer to [7],[12], [19] and references therein.
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